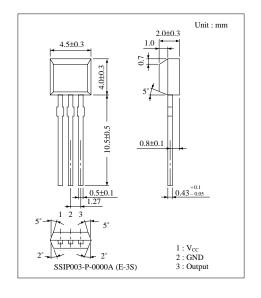
DN6852

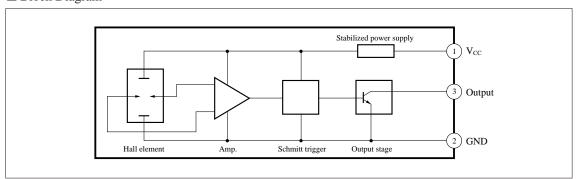
Hall IC (Operating Supply Voltage Range V_{CC} =3.6 to 16V, Operating in One Way Magnetic Field)

Overview

The DN6852 is an integrated circuit making use of Hall effects. It is designed particularly for operating at a low supply voltage in one way magnetic field. It is suitable for various sensors and contactless switches.


■ Features

- Wide range of supply voltage: 3.6 to 16V
- Operating in one way magnetic field.
- TTL and MOS ICs directly drivable by output
- Semipermanent service life because of no contact parts
- Drivable with a small magnet
- 3-pin SIL plastic package (3-SIP)
- Open colector


Applications

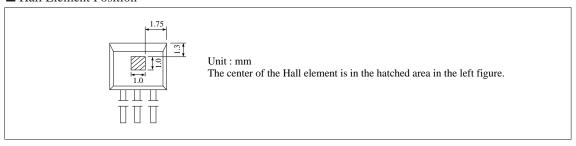
- Speed sensors
- Position sensors
- · Rotation sensors
- · Keyboard switches
- · Microswitches

Note) This IC is not suitable for car electrical equipments.

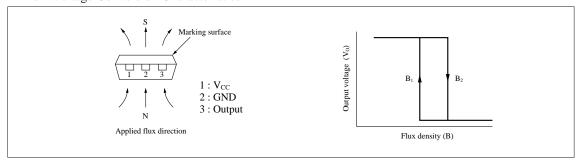
■ Block Diagram

■ Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol Rating		Unit	
Supply voltage	V _{CC}	18	V	
Supply current	I_{CC}	8	mA	
Circuit current	Io	20	mA	
Power dissipation	P_{D}	100	mW	
Operating ambient temperature	$T_{ m opr}$	-40 to +85	°C	
Storage temperature	$T_{\rm stg}$	-55 to + 125	°C	


■ Electrical Characteristics (Ta=25°C)

Parameter	Symbol	Condition	min	typ	max	Unit
Operating flux density	B _{1 (L to H)}	V _{CC} =12V	10	_	_	mT
	B _{2 (H to L)}	V _{CC} =12V		_	60	mT
Low output voltage	$V_{ m OL}$	V _{CC} =16V, I _O =12mA, B=60mT	_	_	0.4	V
		V _{CC} =3.6V, I _O =12mA, B=60mT			0.4	V
High output current	І _{ОН}	V _{CC} =16V, V _O =18V, B=10mT			10	μΑ
		V _{CC} =3.6V, V _O =18V, B=10mT			10	μΑ
Supply current	I _{CC}	V _{CC} =16V			6	mA
		V _{CC} =3.6V			5.5	mA


Note1) Operating supply voltage range V_{CC} (opr)=3.6 to 16V

Note2) For the operating flux density, B_{2 (H to L)} max 450 mT is also available as Rank A.

■ Hall Element Position

■ Flux-Voltage Conversion Characteristics

■ Precaution on Use

1. Change of the operation magnetic flux density dose not depend on the supply voltage, because the stabilization power supply is built-in.

(only for the range ; $V_{\text{CC}}\!\!=\!\!4.5$ to 16V)

2. Change from "H" to "L" level increases the supply current by approx. 1mA.